Molecular systematics and redescription of Myotis diminutus (Chiroptera: Vespertilionidae) in Ecuador

Authors

  • Ana B. Manzano Pontificia Universidad Católica del Ecuador, Quito, Ecuador

DOI:

https://doi.org/10.59763/mam.aeq.v2i.27

Keywords:

Myotis nigricans, new records, taxonomy, Vespertilionidae, Myotis, diminutus, Costa, Western Ecuador, Chiroptera, re-identification

Abstract

El género Myotis es interesante desde el aspecto taxonómico debido al gran potencial de especies críticas que, asociado con las identificaciones erróneas en base a caracteres morfológicos y morfométricos dentro de este grupo, lo hacen uno de los géneros más diversos de mamíferos. Un ejemplo es la especie Myotis diminutus de Ecuador, colectada en la localidad del Centro Científico Río Palenque, en la provincia de Los Ríos, y descrita a partir de un solo ejemplar macho subadulto, práctica taxonómica que suele no ser alentada al no disponer de material suficiente para evidenciar la variación morfológica de la especie. El estado taxonómico de M. diminutus ha sido cuestionado debido a la poca información que se tiene; por este motivo, esta investigación puso en duda su estado como especie. Estudios previos colocan a Myotis nigricans como un taxón cercano morfológicamente a M. diminutus, esto debido a que no presentan características morfológicas que los separen, aunque pueden ser distinguidos por características morfométricas, como la variación en el tamaño del antebrazo y del cuerpo. En este estudio, basado en análisis cuantitativos, cualitativos y moleculares, se confirma que M. diminutus es una especie válida. Se comparó a M. diminutus (sensu stricto) con otras especies de Myotis que se han registrado en la Costa ecuatoriana para observar los caracteres diagnósticos y variaciones morfométricas de M. diminutus. Los datos geográficos mostraron que M. diminutus se encuentra en simpatría con varias especies de este género y que los resultados cuantitativos concluyeron que no existe una diferenciación evidente entre Myotis diminutus y el resto de congéneres presentes en la Costa ecuatoriana, aunque se evidenció que las variables que corresponden al índice craneal (CRI) y el índice maxilar (MXI) son de menor tamaño en M. diminutus que en el resto de las especies, siendo dimensiones para tomar en cuenta en la identificación. Los datos cualitativos indicaron que existe una variación en la forma de los procesos mandibulares (proceso coronoides, condilar y angular), presencia o ausencia de la cresta sagital y forma del cráneo. Estas variaciones están implicadas en las distintas estrategias ecológicas relacionadas con el tipo de dieta y vuelo de cada especie, lo que permite que varias especies de Myotis coexistan en simpatría sin aparente exclusión competitiva. Los datos moleculares validaron la posición de M. diminutus como especie, diferenciándola del resto de la región. Esta investigación aportó con una clave de identificación que permite identificar a varias especies de Myotis de la Costa del Ecuador. El estudio concluye que para el análisis taxonómico de especies del género Myotis, al tratarse de un conjunto de especies crípticas, se debe utilizar métodos integrativos que permitan demostrar de mejor manera las relaciones entre las especies.

Downloads

Download data is not yet available.

References

Albuja, L., y Gardner, A. (2005). A new species of Lonchophylla Thomas (Chiroptera: Phyllostomidae) from Ecuador. Proceedings of the Biological Society of Washington, 118, 442–449.

Alves Rodrigues Pinheiro, E., Metselaar, K., de Jong van Lier, Q., y de Araújo, J. C. (2016). Importance of soil-water to the Caatinga biome, Brazil. Ecohydrology, 9(7), 1313–1327.

Aquino, R., Zárate, R., López, L., García, G., y Charpentier, E. (2015). Current status and threats to Lagothrix flavicauda and other primates in montane forest of the Región Huánuco. Primate Conservation, 2015(29), 31–41.

Arlettaz, R., Perrin, N., y Hausser, J. (1997). Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. Journal of animal ecology, 897–911.

Baker, R. J., Bininda-Emonds, O. R., Mantilla-Meluk, H., Porter, C. A., y Van Den Bussche, R. A. (2012). Molecular timescale of diversification of feeding strategy and morphology in New World leaf-nosed bats (Phyllostomidae): a phylogenetic perspective. Evolutionary history of bats: fossils, molecules and morphology (pp. 385–409).

Basantes Garcés, M. F. (2018). Caracterización morfológica y morfométrica del Murciélago de orejas redondas de cabeza rayada Tonatia saurophila (Phyllostomidae: Chiroptera) (Bachelor's thesis, PUCE-Quito).

Benson, D., Boguski, M., Lipman, D., Ostell, J., Ouellette, B., Rapp, B., y Wheeler, D. (1999). GenBank. Nucleic acids research, 27(1), 12.

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K. y Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in ecology y evolution, 22(3), 148–155.

Bornholdt, R., Oliveira, L. R. D., y Fabián, M. E. (2008). Size and shape variability in the skull of Myotis nigricans (Schinz, 1821) (Chiroptera: Vespertilionidae) from two geographic areas in Brazil. Brazilian Journal of Biology, 68(3), 623–631.

Bradley, R. D., y Baker, R. J. (2001). A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of mammalogy, 82(4), 960–973.

Brown, W. M. (1980). Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proceedings of the National Academy of Sciences, 77(6), 3605–3609.

Brush, S. B. (1982). The natural and human environment of the central Andes. Mountain Research and Development, 19–38.

Bryant, D. (2003). A classification of consensus methods for phylogenetics. DIMACS series in discrete mathematics and theoretical computer science, 61, 163–184.

Burgin, C. J., Colella, J. P., Kahn, P. L., y Upham, N. S. (2018). How many species of mammals are there? Journal of Mammalogy, 99(1), 1–14.

Cadima, J. F., y Jolliffe, I. T. (1996). Size-and shape-related principal component analysis. Biometrics, 710–716.

Charrad, M., Ghazzali, N., Boiteau, V., y Niknafs, A. (2014). Determining the number of clusters using NbClust package. MSDM 2014, 1.

Clare, E. L. (2011). Cryptic species? Patterns of maternal and paternal gene flow in eight Neotropical bats. PLoS One, 6(7).

Clare, E. L., Lim, B. K., Engstrom, M. D., Eger, J. L., y Hebert, P. D. (2007). DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes, 7(2), 184–190.

Clare, E. L., Lim, B. K., Fenton, M. B., y Hebert, P. D. (2011). Neotropical bats: estimating species diversity with DNA barcodes. PloS one, 6(7).

Coltorti, M., y Ollier, C. D. (2000). Geomorphic and tectonic evolution of the Ecuadorian Andes. Geomorphology, 32(1–2), 1–19.

Corruccini, R. S. (1987). Shape in morphometrics: comparative analyses. American Journal of Physical Anthropology, 73(3), 289–303.

Coyne, J. A. (2011). Speciation in a small space. Proceedings of the National Academy of Sciences, 108(32), 12975–12976.

Critical Ecosystem Partnership Fund (2001). Perfil del ecosistema Corredor de Conservación Chocó-Darién-Ecuador Occidental (Hotspot), Colombia y Ecuador.

Cueva Ortiz, J., Espinosa, C. I., Quiroz Dahik, C., Aguirre Mendoza, Z., Cueva Ortiz, E., Gusmán, E., Weber, M. y Hildebrandt, P. (2019). Influence of anthropogenic factors on the diversity and structure of a dry forest in the Central Part of the Tumbesian Region (Ecuador-Perú). Forests, 10(1), 31.

Czaplewski, N. J., Takai, M., Naeher, T. M., Shigehara, N., y Setoguchi, T. (2003). Additional bats from the middle Miocene La Venta fauna of Colombia. Revista de la Academia Colombiana de Ciencias, 27(103), 263–282.

Davidson-Watts, I., Walls, S., y Jones, G. (2006). Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biological conservation, 133(1), 118–127.

Dayan, T., y Simberloff, D. (2005). Ecological and community‐wide character displacement: the next generation. Ecology Letters, 8(8), 875–894.

De la Torre, F., y Kanade, T. (2006). Discriminative cluster analysis. In Proceedings of the 23rd international conference on Machine learning, 241–248.

Díaz, M. M., Solari, S., Aguirre, L. F., Aguiar, L., y Barquez, R. M. (2016). Clave de Identificación de los murciélagos de Sudamérica-Chave de identificação dos morcegos da America do Sul. Publicación Especial 2.

Ding, C., y Li, T. (2007). Adaptive dimension reduction using discriminant analysis and K-means clustering. In Proceedings of the 24th international conference on Machine learning, 521–528.

Driscoll, D. A., Banks, S. C., Barton, P. S., Lindenmayer, D. B., y Smith, A. L. (2013). Conceptual domain of the matrix in fragmented landscapes. Trends in ecology y evolution, 28(10), 605–613.

Drummond A.J. y Rambaut A. (2009). Bayesian evolutionary analysis by sampling trees. The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. P. Lemey, Salemi M. and Vandamme A.-M. New York, Cambridge University Press: 564–574.

Farneda, F. Z., Meyer, C. F., y Grelle, C. E. (2020). Effects of land‐use change on functional and taxonomic diversity of Neotropical bats. Biotropica, 52(1), 120–128.

Farneda, F. Z., Rocha, R., López‐Baucells, A., Groenenberg, M., Silva, I., Palmeirim, J. M., Bobrowiec, P. E., y Meyer, C. F. (2015). Trait‐related responses to habitat fragmentation in Amazonian bats. Journal of Applied Ecology, 52(5), 1381–1391.

Fenton, M. (1974). Feeding ecology of insectivorous bats. Bios, 3–15.

Fenton, M. B., y Bogdanowicz, W. (2002). Relationships between external morphology and foraging behaviour: bats in the genus Myotis. Canadian Journal of Zoology, 80(6), 1004–1013

Filippi-Codaccioni, O., Beugin, M. P., de Vienne, D. M., Portanier, E., Fouchet, D., Kaerle, C., Muselet, L., Queney, G., Petit, E. J., Regis, C., Portier, D., y Pons, J. B. (2018). Coexistence of two sympatric cryptic bat species in French Guiana: insights from genetic, acoustic and ecological data. BMC evolutionary biology, 18(1), 175.

Findley, J. S. (1972). Phenetic relationships among bats of the genus Myotis. Systematic Biology, 21(1), 31–52.

Fišer, C., Robinson, C. T., y Malard, F. (2018). Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology, 27(3), 613–635.

Fortini, P., y Luko, S. (2011). Statistical standards and ASTM, Part 4. Quality Engineering, 23(3), 309–313.

Fraley, C., y Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American statistical Association, 97(458), 611–631.

Freeman, P. W. (1998). Form, function, and evolution in skulls and teeth of bats. Papers in Natural Resources, 9.

Galar, D., y Kumar, U. (2017). Maintenance: Essential electronic tools for efficiency. Academic Press.

García-Morales, R., Badano, E., y Moreno, C. (2013). Response of Neotropical bat assemblages to human land use. Conservation Biology, 27(5), 1096–1106.

Gardner, A. L. (Ed.). (2008). Mammals of South America, volume 1: marsupials, xenarthrans, shrews, and bats (Vol. 2). University of Chicago Press.

Ghazali, M., Moratelli, R., y Dzeverin, I. (2017). Ecomorph evolution in Myotis (Vespertilionidae, Chiroptera). Journal of Mammalian Evolution, 24(4), 475–484.

Ghazali, M., y Dzeverin, I. (2013). Correlations between hardness of food and craniodental traits in nine Myotis species (Chiroptera, Vespertilionidae). Vestnik Zoologii, 47(1), 67–76.

Gonçalves, F., Fischer, E., y Dirzo, R. (2017). Forest conversion to cattle ranching differentially affects taxonomic and functional groups of Neotropical bats. Biological conservation, 210, 343–348.

Gouge, D. (2015). Bats. University of Arizona Cooperative Extension Service and Agricultural Experiment Station Bulletin, 11.

Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological society of America bulletin, 112(7), 1091–1105.

Haarsma, A. J. (2008). Manual for assessment of reproductive status, age and health in European Vespertilionid bats. Electronic publication, version 2.

Hair, J., y Anderson, R. (1995). Multivariate data analysis. Prentice-Hall Inc: New Jersey.

Hammer, Ø., Harper, D. A., y Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., y Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.

Healey, J., y Prus, S. (2009). Statistics: A Tool for Social Research. Nelson Education. Hoffmann, F. G., y Baker, R. J. (2001). Systematics of bats of the genus Glossophaga (Chiroptera: Phyllostomidae) and phylogeography in G. soricina based on the cytochrome–b gene. Journal of Mammalogy, 82(4), 1092–1101.

Hoffmann, F. G., y Baker, R. J. (2003). Comparative phylogeography of short‐tailed bats (Carollia: Phyllostomidae). Molecular Ecology, 12(12), 3403–3414.

Holland, S. M. (2008). Principal components analysis (PCA). Department of Geology, University of Georgia, Athens, GA, 30602–2501.

Hoofer, S. R., y Van Den Bussche, R. A. (2003). Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropterologica 5(5),1–63.

Huang, H., He, Q., Kubatko, L. S., y Knowles, L. L. (2010). Sources of error inherent in species-tree estimation: impact of mutational and coalescent effects on accuracy and implications for choosing among different methods. Systematic Biology, 59(5), 573–583.

Huelsenbeck, J. P., Ronquist, F., Nielsen, R., y Bollback, J. P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294(5550), 2310–2314.

Huelsenbeck, J. P., y Crandall, K. A. (1997). Phylogeny estimation and hypothesis testing using maximum likelihood. Annual Review of Ecology and Systematics, 28(1), 437–466.

Hyvärinen, A. (2015). A unified probabilistic model for independent and principal component analysis. In Advances in Independent Component Analysis and Learning Machines (pp. 75–82). Academic Press.

Jahn, O. (2011). Birds and mammals as indicators for the conservation status of tropical forests in the Ecuadorian Chocó. In Tropical Vertebrates in a Changing World. Bonner Zoologische Monographien 57(57), 169–184.

Johns, G. C., y Avise, J. C. (1998). A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Molecular biology and evolution, 15(11), 1481–1490.

Johnson, A. D. (2010). An extended IUPAC nomenclature code for polymorphic nucleic acids. Bioinformatics, 26(10), 1386–1389.

Johnson, R. A., y Wichern, D. W. (2002). Applied multivariate statistical analysis (Vol. 5, No. 8). Upper Saddle River, NJ: Prentice Hall.

Jolliffe, I. T., y Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202.

Jombart, T., Devillard, S., y Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC genetics, 11(1), 94.

Jüngers, W. L., Falsetti, A. B., y Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometries. Yearbook of Physical Anthropology, 38, 137–161.

Kälersjö, M., Albert, V. A., y Farris, J. S. (1999). Homoplasy increases phylogenetic structure. Cladistics, 15(1), 91–93.

Katoh, K., y Toh, H. (2010). Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics, 26(15), 1899–1900.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer T., Ashton, B., Meintjes, P., y Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649.

Kim, J. O., y Mueller, C. W. (1978). Factor analysis: Statistical methods and practical issues, 14.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of molecular evolution, 16(2), 111–120.

Koopman, K. F. (1978). Zoogeography of Peruvian bats with special emphasis on the role of the Andes. American Museum Novitates, 2651, 1–33.

La Val, R. K. (1973). A revision of the Neotropical bats of the genus Myotis. Natural History Museum of Los Angeles County, Scientific Bulletin, 15, 1–54.

Lack, J. B., Roehrs, Z. P., Stanley Jr, C. E., Ruedi, M., y Van Den Bussche, R. A. (2010). Molecular phylogenetics of Myotis indicate familial-level divergence for the genus Cistugo (Chiroptera). Journal of Mammalogy, 91(4), 976–992.

Lack, J. B., y Van Den Bussche, R. A. (2010). Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae. Journal of Mammalogy, 91(6), 1435–1448.

Lanfear, R., Calcott, B., Ho, S. Y., y Guindon, S. (2012). Partition Finder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular biology and evolution, 29(6), 1695–1701.

Larsen, R. J., Knapp, M. C., Genoways, H. H., Khan, F. A. A., Larsen, P. A., Wilson, D. E., y Baker, R. J. (2012b). Genetic diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an emphasis on South American species. PloS one, 7(10).

Larsen, R. J., Larsen, P. A., Genoways, H. H., Catzeflis, F. M., Geluso, K., Kwiecinski, G. G., Pedersen, S. C., Simal, F., y Baker, R. J. (2012a). Evolutionary history of Caribbean species of Myotis, with evidence of a third Lesser Antillean endemic. Mammalian Biology, 77(2), 124–134.

Leck, C. F. (1979). Avian extinctions in an isolated tropical wet–forest preserve, Ecuador. The Auk, 96(2), 343–352.

Lemmon, A. R., Brown, J. M., Stanger-Hall, K., y Lemmon, E. M. (2009). The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Systematic biology, 58(1), 130–145.

Lim, B. K. (2007). Divergence times and origin of neotropical sheath-tailed bats (Tribe Diclidurini) in South America. Molecular Phylogenetics and Evolution, 45(3), 777–791.

López-González, C., Presley, S. J., Owen, R. D., y Willig, M. R. (2001). Taxonomic status of Myotis (Chiroptera: vespertilionidae) in Paraguay. Journal of Mammalogy, 82(1), 138–160.

López‐Aguirre, C., Hand, S. J., Laffan, S. W., y Archer, M. (2018). Phylogenetic diversity, types of endemism and the evolutionary history of New World bats. Ecography, 41(12), 1955–1966.

López‐Aguirre, C., Hand, S. J., Laffan, S. W., y Archer, M. (2019). Zoogeographical regions and geospatial patterns of phylogenetic diversity and endemism of New World bats. Ecography, 42(6), 1188–1199.

López, S., Sierra, R., y Tirado, M. (2010). Tropical deforestation in the Ecuadorian Chocó: logging practices and socio–spatial relationships. The Geographical Bulletin, 51(1), 3.

Luzzatto, A. (2019). A Deterministic Insight on Principal Component Analysis (PCA). Maddison, W., y DR., M. (2018). Mesquite: a modular system for evolutionary analysis. Version, 3(4).

MAE. (2013). Sistema de clasificación de los ecosistemas del Ecuador continental. Subsecretaría de Patrimonio Natural, Ministerio de Ambiente del Ecuador.

MAE. (2015). Sistema Nacional de Control Forestal. Subsecretaría de Patrimonio Natural, Ministerio de Ambiente del Ecuador.

Magidson, J., y Vermunt, J. (2002). Latent class models for clustering: A comparison with K-means. Canadian Journal of Marketing Research, 20(1), 36–43.

Mares, M. A., Willig, M. R., y Lacher Jr, T. E. (1985). The Brazilian Caatinga in South American zoogeography: tropical mammals in a dry region. Journal of Biogeography, 57–69.

Mayer, F., y Helversen, O. V. (2001). Sympatric distribution of two cryptic bat species across Europe. Biological Journal of the Linnean Society, 74(3), 365–374.

Meyer, A. (1994). Shortcomings of the cytochrome-b gene as a molecular marker. Trends in Ecology y Evolution, 9(8), 278–280.

Miller, M. A., Pfeiffer, W., y Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 gateway computing environments workshop (GCE) (pp. 1–8).

Moratelli, R., de Andreazzi, C. S., de Oliveira, J. A., y Cordeiro, J. L. P. (2011). Current and potential distribution of Myotis simus (Chiroptera, Vespertilionidae). Mammalia, 75(3), 227–234.

Moratelli, R., Gardner, A. L., De Oliveira, J. A., y Wilson, D. E. (2013). Review of Myotis (Chiroptera, Vespertilionidae) from northern South America, including description of a new species. American Museum Novitates, 2013(3780), 1–36.

Moratelli, R., Peracchi, A. L., Dias, D., y de Oliveira, J. A. (2011). Geographic variation in South American populations of Myotis nigricans (Schinz, 1821) (Chiroptera, Vespertilionidae), with the description of two new species. Mammalian Biology, 76(5), 592–607.

Moratelli, R., Wilson, D. E., Novaes, R. L., Helgen, K. M., y Gutiérrez, E. E. (2017). Caribbean Myotis (Chiroptera, Vespertilionidae), with description of a new species from Trinidad and Tobago. Journal of Mammalogy, 98(4), 994–1008.

Moratelli, R., y Wilson, D. E. (2011). A new species of Myotis Kaup, 1829 (Chiroptera, Vespertilionidae) from Ecuador. Mammalian Biology, 76(5), 608–614.

Moratelli, R., y Wilson, D. E. (2015). A second record of Myotis diminutus (Chiroptera: Vespertilionidae): its bearing on the taxonomy of the species and discrimination from M. nigricans. Proceedings of the Biological Society of Washington, 127(4), 533–542.

Moravec, J., Šmíd, J., Štundl, J., y Lehr, E. (2018). Systematics of Neotropical microteiid lizards (Gymnophthalmidae, Cercosaurinae), with the description of a new genus and species from the Andean montane forests. ZooKeys, (774), 105.

Morgan, G. S., y Czaplewski, N. J. (2012). Evolutionary history of the Neotropical Chiroptera: the fossil record. Evolutionary history of bats: fossils, molecules and morphology, 105–161.

Morissette, L., y Chartier, S. (2013). The K-means clustering technique: General considerations and implementation in Mathematica. Tutorials in Quantitative Methods for Psychology, 9(1), 15–24.

Munro, B. H. (2005). Statistical methods for health care research (Vol. 1). Lippincott Williams y Wilkins.

Muñoz Arango, J. (1990). Diversidad y hábitos alimenticios de nurciélagos en transectos altitudinales a través de la Cordillera Central de Los Andes en Colombia. Studies on Neotropical Fauna and Environment, 25(1), 1–17.

Muñoz, J. M. S. (2016). Análisis de Calidad Cartográfica mediante el estudio de la Matriz de Confusión. Pensamiento Matemático, 6(2), 9–26.

Mushtaq, I., y Khan, S. (2012). Factors Affecting Students’ Academic Performance. Global Journal of Management and Business Research, 12(9), 17–22.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., y Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853.

Myers, P. (1978). Sexual dimorphism in size of Vespertilionid bats. The American Naturalist, 112(986), 701–711.

Norberg, U. M., y Rayner, J. M. (1987). Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316(1179), 335–427.

Novaes, R. L. M., Wilson, D., Ruedi, M., y Moratelli, R. (2018). The taxonomic status of Myotis aelleni Baud, 1979 (Chiroptera, Vespertilionidae). Zootaxa, 4446(2), 257–264.

Nowak, R., y Walker, E. (1999). Walker’s mammals of the world. Choice Reviews Online. Ospina-Garcés, S. M., y De Luna, E. (2017). Phylogenetic analysis of landmark data and the morphological evolution of cranial shape and diets in species of Myotis (Chiroptera: Vespertilionidae). Zoomorphology, 136(2), 251–265.

Park, K., Masters, E., y Altringham, J. (1998). Social structure of three sympatric bat species (Vespertilionidae). Journal of Zoology, 244(3), 379–389.

Patterson, B. D., Pacheco, V., y Ashley, M. V. (1992). On the origins of the western slope region of endemism: systematics of fig-eating bats, genus Artibeus. Memorias del Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (Lima), 21, 189–205.

Pavan, A. C., y Marroig, G. (2016). Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Molecular Phylogenetics and Evolution, 103, 184–198.

Peña, D. (2002). Análisis de datos multivariantes. Madrid: McGraw Hills.

Pereira, H. M., y Daily, G. C. (2006). Modeling biodiversity dynamics in countryside landscapes. Ecology, 87(8), 1877–1885.

Pfennig, K. S., y Ryan, M. J. (2007). Character displacement and the evolution of mate choice: an artificial neural network approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1479), 411–419.

Pianka, E. (2011). Evolutionary ecology. Eric R. Pianka.

Platt, R. N., Faircloth, B. C., Sullivan, K. A., Kieran, T. J., Glenn, T. C., Vandewege, M. W., Thomas, E. L. Jr., Backer, R., Stevens, R. D., y Ray, D. A. (2018). Conflicting evolutionary histories of the mitochondrial and nuclear genomes in New World Myotis bats. Systematic Biology, 67(2), 236–249. http://www.doi.org/10.1093/sysbio/syx070

Poore, J., y Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987–992.

Rambaut, A. (2009). FigTree v1. 3.1: Tree figure drawing tool.

Ray, D. A., Pagan, H. J., Thompson, M. L., y Stevens, R. D. (2007). Bats with hAT s: evidence for recent DNA transposon activity in genus Myotis. Molecular biology and evolution, 24(3), 632–639.

Razgour, O., Clare, E. L., Zeale, M. R., Hanmer, J., Schnell, I. B., Rasmussen, M., Gilbert, T. P, y Jones, G. (2011). High‐throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecology and evolution, 1(4), 556–570.

Ridgway, R. (1912). Color standards and color nomenclature Washington. DC: The Author.

Rival, L. (2004). Partnerships for Sustainable Forest management: lessons from the Ecuadorian Chocó. Working Paper 118. QEH Working Paper Series. University of Oxford.

Rocha, L. A., Aleixo, A., Allen, G., Almeda, F., Baldwin, C. C., Barclay, M. V. L. et al. (2014). Specimen collection: An essential tool. Science, 344(6186), 814–815.

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., y Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.

Ruedi, M., y Mayer, F. (2001). Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular phylogenetics and evolution, 21(3), 436–448.

Sánchez, J. (2017). Introducción a la estadística no paramétrica y al análisis multivariado. Quito.

Santana, S. E., Dumont, E. R., y Davis, J. L. (2010). Mechanics of bite force production and its relationship to diet in bats. Functional Ecology, 24(4), 776–784.

Schinz, H. R. (1821). Das Thierreich nach dem Bau der Thiere als Grundlage ihrer Naturgeschichte und der vergleichenden Anatonie von dem Herrn Ritter von Cuvier. Erster Band. Säugerthiere and Vögel. JG Cotta’schen Buchhandlung, Stuttgart and Tübingen.

Schnitzler, H. U., Moss, C. F., y Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Ecology y Evolution, 18(8), 386–394.

Schon, E. A. (2000). Mitochondrial genetics and disease. Trends in biochemical sciences, 25(11), 555–560.

Senar, J. C. (1999). La medición de la repetibilidad y el error de medida. Etologuía, 17, 53–64.

Siemers, B. M., Baur, E., y Schnitzler, H. U. (2005). Acoustic mirror effect increases prey detection distance in trawling bats. Naturwissenschaften, 92(6), 272–276.

Siemers, B. M., Stilz, P., y Schnitzler, H. U. (2001). The acoustic advantage of hunting at low heights above water: behavioural experiments on the European ‘trawling’ bats Myotis capaccinii, M. dasycneme and M. daubentonii. Journal of Experimental Biology, 204(22), 3843–3854.

Solano, H. L., y Álvarez, C. R. (2005). Estadística descriptiva y distribuciones de probabilidad. Universidad del Norte.

Solari, S., y Martínez–Arias, V. (2014). Cambios recientes en la sistemática y taxonomía de murciélagos Neotropicales (Mammalia: Chiroptera). Therya, 5(1), 167–196.

Srinivasulu, C., Srinivasulu, A., Srinivasulu, B., y Jones, G. (2019). Integrated approaches to identifying cryptic bat species in areas of high endemism: The case of Rhinolophus andamanensis in the Andaman Islands. PloS One, 14(10).

Srivathsan, A., y Meier, R. (2012). On the inappropriate use of Kimura‐2‐parameter (K2P) divergences in the DNA‐barcoding literature. Cladistics, 28(2), 190–194.

Stadelmann, B., Lin, L. K., Kunz, T. H., y Ruedi, M. (2007). Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular phylogenetics and evolution, 43(1), 32–48.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313.

Strait, S. G. (1993). Differences in occlusal morphology and molar size in frugivores and faunivores. Journal of Human Evolution, 25(6), 471–484.

Syakur, M. A., Khotimah, B. K., Rochman, E. M. S., y Satoto, B. D. (2018). Integration K-means clustering method and elbow method for identification of the best customer profile cluster. In IOP Conference Series: Materials Science and Engineering, 336 (1), 12017.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., y Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725–2729.

Tharwat, A., Gaber, T., Ibrahim, A., y Hassanien, A. E. (2017). Linear discriminant analysis: A detailed tutorial. AI communications, 30(2), 169–190.

Thompson, J. L., Krovitz, G. E., y Nelson, A. J. (Eds.). (2003). Patterns of growth and development in the genus Homo (Vol. 37). Cambridge University Press.

Tirira, D. G. (2017). Guía de campo de los mamíferos del Ecuador. 2a ed. Asociación Ecuatoriana de Mastozoología y Editorial Murciélago Blanco. Publicación especial sobre los mamíferos del Ecuador 11.

Tirira, D. G. (2020). Mamíferos del Ecuador: lista actualizada de especies/Mammals of Ecuador: Updated checklist species. Versión 2020.1. Fundación Mamíferos y Conservación. Quito.

Velazco, P. M., y Patterson, B. D. (2014). Two new species of yellow–shouldered bats, genus Sturnira Gray, 1842 (Chiroptera, Phyllostomidae) from Costa Rica, Panama and western Ecuador. ZooKeys, 402, 43.

Velazco, S., Pacheco, V., y Meschede, A. (2011). First occurrence of the rare emballonurid bat Cyttarops alecto (Thomas, 1913) in Peru—Only hard to find or truly rare? Mammalian Biology, 76(3), 373–376.

Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chhem, R. K., Mason, M. J., Brain, K., Faure, P., y Fenton, M. B. (2010). A bony connection signals laryngeal echolocation in bats. Nature, 463(7283), 939–942.

Wang, Q., Gao, Q., Gao, X., y Nie, F. (2017). Angle principal component analysis. IJCAI International Joint Conference on Artificial Intelligence.

Weiss, K. C., y Ray, C. A. (2019). Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography, 42(12), 2012–2020.

Wilberg, E. W. (2015). What's in an outgroup? The impact of outgroup choice on the phylogenetic position of Thalattosuchia (Crocodylomorpha) and the origin of Crocodyliformes. Systematic Biology, 64(4), 621–637.

Wilson, D. E., y LaVal, R. K. (1974). Myotis nigricans. Mammalian species, (39), 1–3.

Wilson, D. E., y Mittermeier, R. (2019). Handbook of the mammals of the world, Vol. 9: Bats. Lynx Edicions 9: 716–982.

Wold, S., Esbensen, K., y Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1–3), 37–52.

Wu, H., Jiang, T., Huang, X., Lin, H., Wang, H., Wang, L., Hongxing, N., y Feng, J. (2014). A test of Rensch’s rule in greater horseshoe bat (Rhinolophus ferrumequinum) with female-biased sexual size dimorphism. PloS one, 9(1).

Xanthopoulos, P., Pardalos, P. M., y Trafalis, T. B. (2012). Robust data mining. Springer Science y Business Media.

Yuan, C., y Yang, H. (2019). Research on K-value selection method of K-means clustering algorithm. Multidisciplinary Scientific Journal, 2(2), 226–235.

Published

2020-12-18

How to Cite

Manzano, A. B. (2020). Molecular systematics and redescription of Myotis diminutus (Chiroptera: Vespertilionidae) in Ecuador. Mammalia Aequatorialis, 2, 94. https://doi.org/10.59763/mam.aeq.v2i.27

Issue

Section

Thesis abstracts

Categories