Influence of the Ecuadorian Andes on the genetic and morphometric diversity of Micronycteris megalotis (Chiroptera: Phyllostomidae)

Authors

  • Erick D. Acosta-Luzuriaga Universidad Central del Ecuador, Quito, Ecuador

DOI:

https://doi.org/10.59763/mam.aeq.v2i.26

Keywords:

Andes, bats, Cytochrome Oxidase I, genetic variation, isolation by distance, Phyllostomidae, morphometric variation, Chiroptera, Micronycteris, megalotis

Abstract

The Andes mountain range represents the most important geographic feature in South America. The presence of this mountainous range has facilitated the radiation for several taxonomic groups, including bats. Furthermore, the Andes mountains constitute an important geographic barrier for the dispersion and distribution of species inhabiting this area, which makes them an ideal place to carry out phylogeographic studies. The Little Big-eared Bat Micronycteris megalotis is a widely distributed species in the Neotropics, with populations on both flanks of the Ecuadorian Andes. The main objective of this study was to determine the influence of the Equatorial Andes on the morphometric and genetic structure of eastern and western M. megalotis populations. A total of 57 skulls and skins deposited in the collections of Instituto Nacional de Biodiversidad (INABIO), Escuela Politécnica Nacional (MEPN), and Museo de Zoología de la Pontificia Universidad Católica del Ecuador (QCAZ) were measured for morphometric analyses. Additionally, 57 Cytochrome Oxidase I sequences deposited in Genbank covering the species geographic distribution were used for genetic analyses. Morphometric variation was analyzed using Principal Component and Discriminant Analyses. To evaluate genetic variation, genetic distances were calculated, and a Bayesian Inference method was used to estimate phylogenetic relationships among populations, and a clade probability tree was elaborated. Morphometric and genetic variation was correlated with geographic distances using Mantel tests to corroborate the isolation by distance hypothesis. Results suggest that morphometric variation was present among populations, with western populations being bigger than eastern specimens. Although, there was a genetic variation between western and eastern populations, this variation was small (˂ 5% divergence) to consider them as distinct groups. Phylogenetic analyses showed that sequences from western Ecuador are similar to those from Mexico and Nicaragua than to populations in eastern Ecuador, suggesting a cis-trans division of the populations. This variation can be explained by the isolation of distance hypothesis only for genetic data, while morphometric variation may be related to different environmental conditions related to the presence of the Andes, which is not spatially structured. Based on preliminary results, it can be presumed that the Andes mountains have promoted an initial process of differentiation in the populations of M. megalotis present on eastern and western flanks of the Andes. Nevertheless, a larger sample is required to corroborate this hypothesis. Finally, results highlight dynamic nature of these populations, showing change across time and space, partially due to the influence of the Andes, underscoring its importance in shaping patterns of diversity in the Neotropics.

Downloads

Download data is not yet available.

References

Abascal F, Irisarri I & Zardoya R. 2014. Filogenia y evolución molecular. En: Sebastián Á & Pascual-García A (Eds.). 2014. Bioinformática con ñ: Volumen 1: Principios de Bioinformática. España: Create Space. p. 231-259.

Albert JS, Crampton W, Thorse D & Levejoy N. 2005. Phylogenetic systematics and historical biogeography of the Neotropical electric fish Gymnotus (Teleostei: Gymnotidae). Systematics and Biodiversity. 2(4):375–417.

Albert JS, Lovejoy NR & Crampton WGR. 2006. Miocene tectonism and the separation of cis- and trans-Andean river basins: evidence from Neotropical fishes. Journal of South American Earth Sciences. 21(1–2):14–27.

Albuja L. 1999. Murciélagos del Ecuador. 2 ed. Quito: Departamento de Ciencias Biológicas. CICETRONIC. 288 p.

Albuja L, Almendáriz A, Barriga R, Montalvo LD, Cáceres F & Román JL. 2012. Fauna de vertebrados del Ecuador. Quito-Ecuador: Instituto de Ciencias Biológicas. Escuela Politécnica Nacional. 490p.

Alonso-Mejía A & Medellín R. 1991. Micronycteris. Mammalian Species (376):1–6.

Antonelli A, Nylander JAA, Persson C & Sanmartín I. 2009. Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceeding of the National Academy of Sciences. 106(24):9749–9754.

Arbeláez-Cortés E. 2012. Comparative phylogeography: concepts, methods and general patterns in neotropical birds. Acta Biológica Colombiana 17(1):19–38.

Avise J. 2000. Phylogeography-the history and formation of species. Cambridge-Massachusetts: Harvard University Press. 447p.

Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA & Saunders NC. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology Systematics. 18:489–522.

Baird AB, Braun JK, Engstrom MD, Holbert AC, Huerta MG, Lim BK, Mares MA, Patton JC & Bickham JW. 2017. Nuclear and mtDNA phylogenetic analyses clarify the evolutionary history of two species of native Hawaiian bats and the taxonomy of Lasiurini (Mammalia: Chiroptera). PLoS One 12(10):1–27.

Baker RJ & Bradley RD. 2006. Speciation in mammals and the genetic species concept. Journal of Mammalogy. 87(4):643–662.

Baker RJ, Hoofer SR, Porter CA & Van Den Bussche RA. 2003. Diversification among new world leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. Occasional Papers, Museum of Texas Tech University. (230):1–33.

Baker RJ, Solari S, Cirranello A & Simmons NB. 2016. Higher level classification of phyllostomid bats with a summary of DNA synapomorphies. Acta Chiropterologica. 18(1):1–38.

Benathar TCM, Nagamachi CY, Rodrigues LRR, O’Brien PCM, Ferguson-Smith MA, Yang F & Pieczarka JC. 2019. Karyotype, evolution and phylogenetic reconstruction in Micronycterinae bats with implications for the ancestral karyotype of Phyllostomidae. BMC Evolutionary Biology. 19(1):1–13.

Benham PM & Witt CC. 2016. The dual role of andean topography in primary divergence: functional and neutral variation among populations of the hummingbird, Metallura tyrianthina. BMC Evolutionary Biology. 16(22):1–16.

Bradley RD & Baker RJ. 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy. 82(4):960–973.

Brown WM, George M & Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States. 76(4):1967–1971.

Brumfield RT & Edwards S V. 2007. Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution. 61(2):346–367.

Burneo S. 2009. Áreas protegidas y conservación en los países andinos: modelos, estrategias y participación. Revista Letras Verdes. 3(3):6–7.

Canals M, Iriarte-Díaz J, Olivares R & Novoa FF. 2001. Comparación de la morfologia alar de Tadarida brasiliensis (Chiroptera: Molossidae) y Myotis chiloensis (Chiroptera: Vespertilionidae), representantes de dos diferentes patrones de vuelo. Revista Chilena de Historia Natural. 74:699–704.

Carrera JP, Solari S, Larsen PA, Alvarado DF, Brown AD, Carrion C, Tello S & Baker RJ. 2010. Bats of the tropical lowlands of western Ecuador. Special Publications, Museum of Texas Tech University. (57):1–37.

Castro I & Román H. 2000. Evaluación ecológica rápida de la mastofauna en el Parque Nacional LLanganates. En: Vásquez MA, Larrea M & Suárez L., Biodiversidad en el Parque Nacional Llanganates: un reporte de las evaluaciones ecológicas y socioeconómicas rápidas. Quito: EcoCiencia, Ministerio del Ambiente, Herbario Nacional del Ecuador, Museo Ecuatoriano de Ciencias Naturales e Instituto Internacional de Reconstrucción Rural. p. 129–147.

Cavalli-Sforza LL & Edwards AWF. 1967. Phylogenetic analysis: models and estimation procedures. American Journal of Human Genetic. 19(3):233–257.

Chaves JA, Weir JT & Smith TB. 2011. Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. 20(21):4564–4576.

Cortés-Ortiz L, Bermingham E, Rico C, Rodríguez-Luna E, Sampaio I & Ruiz- García M. 2003. Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Molecular Phylogenetics and Evolution. 26(1):64–81.

Cuervo A, Pérez N & Lamus F. 2015. Levantamiento de la Cordillera Oriental de los Andes colombianos. Apuntes científicos uniandinos. 19:68–73.

Datzmann T, von Helversen O & Mayer F. 2010. Evolution of nectarivory in phyllostomid bats (Phyllostomidae Gray, 1825, Chiroptera: Mammalia). BMC Evolutionary Biology. 10(165):1–14.

De-Silva DL, Mota LL, Chazot N, Mallarino R, Silva-Brandao KL, Gómez Piñerez LM, Freitas AVL, Lamas G, Joron M, Mallet J, Giraldo CE, Uribe S, Särkinen T, Knapp S, Jiggins CD, Willmott KR & Elias M. 2017. North Andean origin and diversification of the largest ithomiine butterfly genus. Nature. 7(45966):1–17.

Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, de Campos Telles MP, Rangel TF & Bini LM. 2013. Mantel test in population genetics. Genetics and Molecular Biology. 36(4):475–485.

Duellman WE. 1979. The herpetofauna of the Andes: patterns of distribution, origin, differentiation, and present communities. En: Duellman WE (ed.), The South American herpetofauna: its origin, evolution and dispersal. Lawrence-Kansas: Natural History Museum, University of Kansas. p. 371-459.

Efron B. 2012. Bayesian inference and the parametric bootstrap. The Annals of Applied Statistics. 6(4):1971–1997.

Fabre P-H, Upham NS, Emmons LH, Justy F, Leite YLR, Loss AC, Orlando L, Tilak M-K, Patterson BD & Douzery EJP. 2016. Mitogenomic phylogeny, diversification, and biogeography of South American spiny rats. Molecular Biology and Evolution. 34(3):613–633.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39(4):783–791.

Fonseca RM, Hoofer SR, Porter CA, Cline CA, Parish DA, Hoffmann FG & Baker RJ. 2007. Morphological and molecular variation within little big-eared bats of the genus Micronycteris (Phyllostomidae: Micronycterinae) from San Lorenzo, Ecuador. En: Kelt DA, Lessa EP, Salazar-Bravo J & Patton James L (eds.), The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. Berkeley and Los Angeles-California: University of California Publications in Zoology. p. 721-746.

García-Mendoza DF, López-González C, Hortelano-Moncada Y, López-Wilchis R & Ortega J. 2018. Geographic cranial variation in Peromyscus melanotis (Rodentia: Cricetidae) is related to primary productivity. Journal of Mammalogy 99(4):898–905.

Gregory-Wodzicki KM. 2000. Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin. 112(7):1091–1105.

Hall ML, Samaniego P, Le Pennec JL, Johnson JB. 2008. Ecuadorian Andes volcanism: A review of Late Pliocene to present activity. Journal of Volcanology and Geothermal Research. 176(1):1–6.

Hammer Ø, Harper DAT & Ryan PD. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 4(1):1–9.

Harvey MG, Brumfield RT. 2015. Genomic variation in a widespread neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow. Molecular Phylogenetics and Evolution. 83:305–316.

Hasegawa M, Kishino H & Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22(2):160–174.

Hebert PDN, Cywinska A, Ball SL & de Waard JR. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B. (270):313–321.

Hoffmann FG & Baker RJ. 2003. Comparative phylogeography of short-tailed bats (Carollia: Phyllostomidae ). Molecular Ecology (12):3403–3414.

Holanda GM, de Oliveira EHC & Ribeiro NAB. 2012. Geographic dispersion of Phyllostomidae family (Chiroptera) based on Cytochrome b sequences. Revista Pan-Amazônica Saúde 3(3):21–31.

Hurtado N & D’Elía G. 2018. Taxonomy of the Genus Gardnerycteris (Chiroptera: Phyllostomidae). Acta Chiropterologica 20(1):99–115.

Jarrín-V P & Menéndez-Guerrero PA. 2011. Environmental components and boundaries of morphological variation in the short-tailed fruit bat (Carollia spp.) in Ecuador. Acta Chiropterologica 13(2):319–340.

Kattan GH, Franco P, Rojas V, Morales G. 2004. Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. Journal of Biogeography 31(11):1829–1839.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120.

Lanfear R, Calcott B, Ho SYW & Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses 29(6):1695–1701.

Larsen PA, Siles L, Pedersen SC & Kwiecinski GG. 2011. A new species of Micronycteris (Chiroptera: Phyllostomidae) from Saint Vincent, Lesser Antilles. Mammalian Biology. 76:687–700.

Lasso D & Jarrín-V P. 2005. Diet variability of Micronycteris megalotis in pristine and disturbed habitats of northwestern Ecuador. Acta Chiropterologica 7(1):121-130.

Lee TE, Boada-Terán C, Scott AM, Burneo SF & Hanson JD. 2011. Small mammals of Sangay National Park, Chimborazo province and Morona Santiago province, Ecuador. Occasional Papers, Museum of Texas Tech University. (305):1–14.

Lomize MG. 2008. The Andes as a peripheral orogen of the breaking-up Pangea. Geotectonics. 42(3):206–224.

López de Luzuriaga A & Olano JM. 2006. Con los pies en el suelo: incluyendo la estructura espacial de los datos en los análisis multivariantes. Revista Ecosistemas. 15(3):59–67.

Luebert F & Weigend M. 2014. Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution. 2(27):1–17.

Lynch JD & Duellman WE. 1997. Frogs of the genus Eleutherodactylus (Leptodactylidae) in western Ecuador: systematics, ecology, and biogeography. Lawrence, Kan.: Natural History Museum, University of Kansas. 237.

Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research. 27(2):209–220.

Mendoza-Revilla J. 2012. Aportes de la filogenética a la investigación médica. Revista Médica Herediana. 23(2):119–127.

Miller MJ, Bermingham E, Klicka J, Escalante P, Raposo do Amaral FS, Weir JT & Winker K. 2008. Out of Amazonia again and again: episodic crossing of the Andes promotes diversification in a lowland forest flycatcher. Proceedings of the Royal Society B. 275(1639):1133–1142.

Morales-Martínez DM. 2017. Taxonomía y sistemática de los murciélagos del género Micronycteris Gray, 1866 (Chiroptera: Phyllostomidae) en Colombia. Trabajo de grado presentado como requisito parcial para la obtención del título de Magister en Ciencias-Biología. Universidad Nacional de Colombia.

Morales-Martínez DM, Camacho MA & Burneo SF. 2018. Distribution and morphometric variation of Micronycteris schmidtorum (Sanborn, 1935) (Chiroptera: Phyllostomidae) in North South America with the first record from Ecuador. Mastozoología Neotropical. 25(2):391–398.

Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA & O’Brien SJ. 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB & Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature. 403(6772):853–858.

Nájera-Cortazar LA. 2013. Filogenia del murciélago endémico Myotis peninsularis (Chiroptera, Vespertilionidae) con ADN mitocondrial y análisis de morfometría geométrica. Trabajo de Grado presentado como requisito para optar al Título de Maestro en Ciencias. Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz-Baja California.

Olano JM, Luzuriaga AL. 2008. Métodos para incorporar la estructura espacial en el análisis de datos multivariantes. En: Maestre FT, Escudero A & Bonet A (Eds.). 2008. Introducción al análisis espacial de datos en ecología y ciencias ambientales: métodos y aplicaciones. Madrid-España: Universidad Rey Juan Carlos, servicio de publicaciones. p. 303–344.

Opazo JC. 2005. A molecular timescale for caviomorph rodents (Mammalia, Hystricognathi). Molecular Phylogenetics and Evolution. 37(3):932–937.

Opazo JC, Wildman DE, Prychitko T, Johnson RM & Goodman M. 2006. Phylogenetic relationships and divergence times among new world monkeys (Platyrrhini, Primates). Molecular Phylogenetics and Evolution 40(1):274–280.

Ordóñez-Garza N, Matson JO, Strauss RE, Bradley RD & Salazar-Bravo J. 2010. Patterns of phenotypic and genetic variation in three species of endemic Mesoamerican Peromyscus (Rodentia: Cricetidae). Journal of Mammalogy 91(4):848–859.

Patterson BD, Solari S & Velazco PM. 2012. The role of the Andes in the diversification and biogeography of neotropical mammals. En: Patterson BD & Costa LP (eds.). 2012. Bones, clones and biomes: the history and geography of recent neotropical mammals. Chicago-Illinois: University of Chicago Press. p. 351–378.

Pedrosa I, Juarros-Basterretxea J, Robles-Fernández A, Basteiro J & García- Cueto E. 2015. Pruebas de bondad de ajuste en distribuciones simétricas, ¿que estadístico utilizar?*. Universitas Psychologica. 14(1):245–254.

Pinto CM. 2009. Genetic diversity of the common vampire bat Desmodus Rotundus in Ecuador: testing cross-andean gene flow. Trabajo de Grado presentado como requisito parcial para optar al Título de Masters of Science.Texas Tech University.

Porter CA, Hoofer SR, Cline CA, Hoffmann FG & Baker RJ. 2007. Molecular phylogenetics of the Phyllostomid bat genus Micronycteris with descriptions of two new subgenera. Journal of Mammalogy. 88(5):1205–1215.

Pulvers JN & Colgan DJ. 2007. Molecular phylogeography of the fruit bat genus Melonycteris in northern Melanesia. Journal of Biogeography. 34(4):713–723.

Rodríguez-Posada ME & Sánchez-Palomino P. 2009. Taxonomía del género Phyllostomus (Chiroptera: Phyllostomidae) en Colombia. Mastozoología Neotropical. 16(1):153–168.

Rodríguez-San Pedro A, Allendes JL, Carrasco-Lagos P & Moreno RA. 2014. Murciélagos de la Región Metropolitana de Santiago, Chile. Seremi del Medio Ambiente Región Metropolitana de Santiago, Universidad Santo Tomás y Programa para la Conservación de los Murciélagos de Chile.

Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA & Huelsenbeck JP. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 61(3):539–542.

Ruelas D. 2017. Diferenciación morfológica de Carollia brevicauda y C. perspicillata (Chiroptera: Phyllostomidae) de Perú y Ecuador. Revista peruana de biología. 24(4):363–382.

Shoemaker JS & Fitch WM. 1989. Evidence from nuclear sequences that invariable sites should be considered when sequence divergence is calculated. Molecular Biology and Evolution. 6(3):270–289.

Siles L, Brooks DM, Aranibar H, Tarifa T, Vargas M. RJ, Rojas JM & Baker RJ. 2013. A new species of Micronycteris (Chiroptera: Phyllostomidae) from Bolivia. Journal of Mammalogy 94(4):881–896.

Simmons NB. 1996. A new species of Micronycteris (Chiroptera: Phyllostomidae) from northeastern Brazil, with comments on phylogenetic relationships. American Museum Novitates (3158):1–34.

Simmons NB, Voss RS & Fleck DW. 2002. A new amazonian species of Micronycteris (Chiroptera: Phyllostomidae) with notes on the roosting behavior of sympatric congeners. American Museum Novitates 82(3358):1–14.

Swofford DL. 2002. PAUP* Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland-Massachusetts.

The R Development Core Team. 2008. R: A Language and Environment for Statistical Computing.

Tirira DG. 2017. Guía de campo de los mamíferos del Ecuador. 2 ed. Quito: Edición Ediciones Murciélago Blanco. Publicación especial sobre los mamíferos del Ecuador 11.

Tu VT, Csorba G, Ruedi M, Furey NM, Son NT, Thong VD, Bonillo C & Hassanin A. 2017. Comparative phylogeography of bamboo bats of the genus Tylonycteris (Chiroptera, Vespertilionidae) in Southeast Asia. European Journal of Taxonomy (274):1–38.

Vargas-Arboleda AF, Cuadrado-Ríos S & Mantilla-Meluk H. 2020. Systematic considerations on two species of nectarivorous bats (Anoura caudifer and A. geoffroyi) based on barcofing sequences. Acta Biológica Colombiana 25(2).

Vargas-Vivanco RE. 2018. Simulación computacional de modelos probabilísticos de evolución del ADN. Trabajo de Grado presentado como requisito para optar al Título de Ingeniería Matemática. Escuela Politécnica Nacional. Quito.

Velazco PM. 2005. Morphological phylogeny of the Bat genus Platyrrhinus Saussure, 1860 (Chiroptera: Phyllostomidae) with the description of four new species. Fieldania: Zoology. (105):1–54.

Velazco PM & Solari S. 2003. Taxonomía de Platyrrhinus dorsalis y Platyrrhinus lineatus (Chiroptera: Phyllostomidae) en Perú. Mastozoología Neotropical 10(2):303–319.

Williams SL & Genoways HH. 2008. Subfamily Phyllostominae Gray, 1825. En: Gardner A (Ed.). 2008. Mammals of South America Volume 1-Marsupials Xenarthrans Shrews and Bats. Chicago-Illinois: The University of Chicago Press. p. 255-299.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution. 39(3):306–314.

Zurc D & Velazco PM. 2010. Análisis morfológico y morfométrico de Carollia colombiana Cuartas et al. 2001 y C. monohernandezi Muñoz et al. 2004 (Phyllostomidae: Carollinae) en Colombia. Chiroptera Neotropical 16(1):567–572.

Downloads

Published

2020-12-18

How to Cite

Acosta-Luzuriaga, E. D. (2020). Influence of the Ecuadorian Andes on the genetic and morphometric diversity of Micronycteris megalotis (Chiroptera: Phyllostomidae). Mammalia Aequatorialis, 2, 93. https://doi.org/10.59763/mam.aeq.v2i.26

Issue

Section

Thesis abstracts

Categories